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We consider classical billiards in plane, connected, but not necessarily bounded 
domains. The charged billiard ball is immersed in a homogeneous, stationary 
magnetic field perpendicular to the plane. The part of dynamics which is not tri- 
vially integrable can be described by a "bouncing map." We compute a general 
expression for the Jacobian matrix of this map, which allows us to determine 
stability and bifurcation values of specific periodic orbits. In some cases, the 
bouncing map is a twist map and admits a generating function. We give a 
general form for this function which is useful to do perturbative calculations and 
to classify periodic orbits. We prove that billiards in convex domains with suf- 
ficiently smooth boundaries possess invariant tori corresponding to skipping 
trajectories. Moreover, in strong field we construct adiabatic invariants over 
exponentially large times. To some extent, these results remain true for a class 
of nonconvex billiards. On the other hand, we present evidence that the billiard 
in a square is ergodic for some large enough values of the magnetic field. 
A numerical study reveals that the scattering on two circles is essentially chaotic. 

KEY WORDS: Billiards; magnetic field; twist map; integrability; adiabatic 
invariant; ergodicity. 

1. I N T R O D U C T I O N  

We consider the classical motion of a particle of mass m and charge q in 
a plane domain Q. A homogeneous, stationary magnetic field B perpen- 
dicular to the plane makes the particle move on arcs of Larmor radius p. 
Whenever it encounters the boundary, the particle is reflected specularly. 
This problem was first considered by Robnik and Berry. t15" 14) 

One point of interest in such models is the problem of integrable versus 
ergodic behavior of Hamiltonian systems. In zero field, we know examples 
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of integrable billiards (elliptic or rectangular boundary) as well as ergodic 
ones (dispersive Sinai billiards, Bunimovich stadium; see, for instance, 
ref. 7). Since it is unlikely that integrability is stable with respect to pertur- 
bation by a magnetic field, B is a natural parameter for studying the transi- 
tion from order to chaos. One question is whether the billiard can become 
globally ergodic in strong enough field. 

Another motivation for studying magnetic billiards is connected to the 
problem of quantum chaos. Recently, it has become possible to create 
mesoscopic systems where the electrons' motion is essentially ballistic. ~ 
Behavior of some macroscopic observables, like the susceptibility, can be 
surprisingly complicated t~61 and may be related to classical dynamics. In 
order to be able to apply semiclassical methods like trace formulas, it is 
desirable to have a good knowledge of classical periodic orbits and their 
stability, at least perturbatively. 

This paper is organized as follows. In Section 2, we give a more precise 
definition of the billiard flow and boundaries considered. The interesting 
part of dynamics can be described by a bouncing map T, defined in Sec- 
tion 3, where we also give an exact expression for the Jacobian matrix 
of T. In some cases, T is a twist map and admits a generating function G. 
In Section 4, we give an exact expression of G, and we discuss its physical 
interpretation and its practical applications. 

Our main analytical results are contained in Section 5, where we con- 
sider billiards with smooth, convex boundaries. Using perturbative techni- 
ques, we analyze different quasiintegrable limits. In Section 5.2, we prove 
the existence of invariant curves for all values of the magnetic field. These 
quasiperiodic trajectories correspond physically to diamagnetic currents 
along the boundary. Our KAM-type result generalizes the well-known 
theorem of Lazutkin ~8~ on the existence of caustics near the boundary, in 
the zero-field case. The magnetic field, however, breaks the symmetry 
between the forward and backward skipping orbits, and at intermediate 
values of the field, only one kind of skipping orbit is present. In Section 5.3, 
we analyze the strong-magnetic-field limit. We compute an expansion of 
the bouncing map in powers of the Larmor radius and construct an 
adiabatic invariant on a time scale growing exponentially with the 
magnetic field when the boundary is analytic. At low order, this adiabatic 
invariant coincides with the one derived by Robnik and Berry. In order to 
construct the invariant, we derive a theorem on a class of maps of the 
annulus, which may be of interest in a broader context. Section 7 is devoted 
to its proof. 

In Section 6, we study billiards which may show an important chaotic 
component, because of singularities in the boundary (polygons) or because 
of a negative curvature. It turns out that the properties of billiards in 
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convex domains can be to some extent generalized to billiards with concave 
boundary. In general it seems that billiards in a magnetic field are of the 
mixed type (invariant tori and chaotic components coexist). A possible 
exception is the case of the square at some particular values of the 
magnetic field, where we present an analytical argument and numerical 
evidence for a completely chaotic motion. 

2. DEFINITION OF THE BILLIARDS 

Let Q be a connected domain in R 2. We assume for simplicity that the 
boundary OQ consists of simple, closed, piecewise C 2 curves of total length 
IOQI, although some of our results may be extended to more general cases. 
Several of them, however, need a higher degree of differentiability, which 
will be clearly indicated on the spot. 

The boundary is parametrized with the curvilinear abscissa or 
arclength s: 

x ( s )=(X( s ) ,  Y(s)), ds ' -=dX'-+dY'- ,  s t [ 0 ,  10QI) (1) 

The unit tangent and normal vectors and the (signed) curvature are given 
by 

t(s) = (X'(s), Y'(s)) = (cos r(s), sin r(s)) 

n(s) = ( - Y'(s), X'(s)) (2) 

dr , 
x(s) = -~s = X (s) Y"(s) - X"(s) Y'(s) - 1 

p(s) 

Parametrization is chosen in such a way that n is always oriented toward 
the interior of Q (see Fig. 1). In this way, the curvature is positive for a 
convex boundary. We suppose x(s) to be defined and continuous 
everywhere but on a set Ez of punctual values of s. The vectors t and n are 
undefined on a set El c E 2. 

Inside Q, the billiard flow is given by the Lagrangian 

L(x, ~) = �89 2 + q(~ [ A(x)), A(x) = ( - �89 yB, �89 (3) 

The resulting motion is simply circular uniform, with Larmor radius 

my (2mE) 1/2 
(4) 

IqBI IqBI 

where speed v = I/~1 and energy E are constants of motion. We adopt the sign 
convention qB < 0, which implies that the particle turns counterclockwise, 
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Fig. 1. Examples of billiard domains Q, with tangent and normal vectors to the boundary 
OQ: (a) bounded domain, (b) unbounded domain. 

and we take some characteristic length of  the billiard as a length unit, so 
that /1  can be considered as a dimensionless parameter.  Thus, increasing B 
is equivalent to decreasing E or  increasing the size of  the billiard (which 
can be viewed as taking the the rmodynamic  limit). 

Each time the particle hits the boundary ,  the velocity changes accord- 
ing to the law of  specular reflection v ' =  v - 2 ( v  [ n)n, which is well defined 
for almost  every point  of  the boundary .  2 

The phase space M =  Q x S ~ can be divided into two disjoint sets M1 
and M 2. The set M I consists of  all the orbits that  never touch the bound-  
ary. It corresponds to an integrable componen t  of  the mot ion  and may  be 
empty. In nonzero  magnetic field (/t < o0), the orbits of  M2 hit the bound-  
ary an infinite number  of  times. It is thus natural  to s tudy the dynamics  in 
M 2 by means of  a bouncing map. 

3. THE B O U N C I N G  M A P  A N D  ITS J A C O B I A N  M A T R I X  

Let us consider the trajectory between two successive collisions with 
OQ, occurring at P0 = (X(so), Y(so)) and Pl  = (X(sl), Y(sl)). The trajectory 
is an arc y of  center O, radius gt, and angle ~ (see Fig. 2). 

We call 0; the angle between the arc and the boundary  at P;,  and 
u,. = - cos 0i, i = 0, I. Quantit ies s and u are the Birkhoff variables and the 
bouncing map T is defined as 

T: (So, Uo)~--~(sl,u,) (5) 

2 Subtleties may occur in the comers or if (vl n)= 0 and p ~<ll at the point of colfision, but 
they are of little importance for the following. 



Classical Billiards in a Magnetic Field 85 

O 

Fig. 2. The trajectory between two successive bounces is an arc 7 of radius p, angle ~b, and 
extremities Po and P~. The Jacobian matrix of the bouncing map T depends on the length 1 
of the chord, the angle 2' between chord and arc, the angles 0o, 01 between arc and boundary, 
and the curvature at P0, PI- 

I f  1 is the length of the chord PoP~, and Z is the angle between the 
chord  and the arc 7, simple geomet ry  shows that  

l 
~b =2Z,  s i n z =  (6) 

In general, there m a y  be two trajectories with supplementa ry  Z for a given 
l (see also Fig. 13). This  is a characterist ic magnet ic  field effect. 

General izing Birkhoff 's  technique (ref. 3, p. 173; see also ref. 7), we find 
the following result, 

by 
P r o p o s i t i o n  1. If  So, sl r E2, the Jacobian  matr ix  DT of T is given 

Osl Xo l cosZ-s in (Oo+2Z)  
OSo sin Ol 

Os____kt = l cos Z 

OUo sinOl sinOo 
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OUl sin(00 + 2Z) sin(01 + 2Z) - sin 0o sin 01 

OSo l cos Z 

-Ico sin(0, + 2Z) - K1 sin(00 + 2Z) + KotC~ l cos Z 

Ou___2 = xl l cos Z - sin(01 + 2Z) 

OUo sin 0o 
(7) 

where K i = K(Si). 

For completeness and consistency of notation, we give a proof in 
Appendix A. We noticed that an alternative proof  of this formula was 
provided in ref. 13. All the quantities appearing in (7) can be easily 
expressed as functions of So and s~ [see (A1) and (A2)]. It is in general 
much more difficult to solve the relation uo(So, Sl) with respect to sl,  in 
order to obtain D T  as a function of zo = (So, u0). 

A first observation is that D T  has unit determinant, and hence the 
Birkhoff variables are conjugate, although momentum and velocity are not 
collinear in a magnetic field (see Section 4). 

A second observation concerns the element Os~/OUo. We see that its 
sign depends only on X. Suppose that the shape of Q is such that it cannot 
contain any arc of radius It and angle larger than g. Then we have 
Osl/Ouo > 0, and u0 is uniquely defined for given so and sl. In such a case, 
T is called a (symplectic) twist map. Twist maps, especially when con- 
tinuous, have many properties (see, e.g., ref. 11 for a review), some of which 
we will discuss in the next section. 

The Jacobian matrix allows us to compute Liapunov exponents and to 
determine the stability of periodic orbits. If we define for z = ( s ,  u) the 
stability matrix 

S,,(z) = DT( T " - ' z )  . :. DT( Tz) DT(z) (8) 

then the Liapunov exponents are given by 

_ m ~n s,,(z) s,,Iz) A + ( z ) =  _ l i  l n T r  v (9) 

If z belongs to an orbit of period n, the orbit is hyperbolic and 
unstable if ITrS, , (z)]>2,  parabolic if rTrSn(z) ]=2 ,  and elliptic if 
[Tr S,,(z)] < 2. In the latter case, the orbit is stable unless resonance occurs. 
In Section 6, we will give examples of how to apply the formula (7) to 
analyze the stability of specific families of periodic orbits. 
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4. G E N E R A T I N G  F U N C T I O N S  

Here we call a generating function of the continuous map T a C ~ func- 
tion G(so, sl) such that 

dG = u o dso - ul dsl (10) 

It is easy to check the following properties Itll" 

1. If T is an area-preserving twist map, it admits a generating func- 
tion, unique up to an additive constant, given by 

) - f c'~ 
) 

G(so, St - Uo(~,q) d ~ - u t ( ~ , l l ) d r l  (11) 

2. If G is C 2, the map T generated by G is always area preserving. It 
is a twist map if 0~.o.,. t G > 0. 3 

3. If G is C 2, u is a constant of motion iff G(so, st) =g(s l  -So) .  

In zero field, G is known to be the length of the chord l(so, s~). For 
magnetic billiards, we found that G depends also on an area associated to 
the trajectory, a feature appearing apparently in all problems involving a 
magnetic field: 

Proposition 2. Suppose that Q is bounded and that T is a twist 
map. Then, for So, st ~ E 2 ,  the generating function is given by 

G=s (12) 

where ~ is the length of the arc and : is the area between the arc and the 
boundary (see Fig. 3). 

We give the proof  in Appendix B. For  practical purposes, it is useful 
to write G in the form 

G(s0, sl) = 1 A(so ' st)  + B/,(l(so, st)) (13) 
/t 

where A, the area between the chord and the boundary, does not depend 
on the magn6tic field, and 

(') '( B.(l)=/~Arcsin ~ + ~  1 4/,2 j (14) 

is equal to ~ minus the area between the chord and the arc, divided by It. 

3 T can be degenera te  if 0-'.~.~, G = 0. 
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Fig. 3. When T is a twist map, its generating function G can be expressed (a) as a function 
of the length ~ of y and the area if '  between y and aQ, or (b) as a function of the length / 
of PoPi  and the area A between PoPi and OQ. 

As an example, let us consider an elliptic boundary, of equation 

x = (2 cos ~o, sin q~), 
ds 
--=C(q~)=(cosZ q~ + 22sin2 ~o) u2 (15) 

If the magnetic field is low enough (in fact, if/x > 2 -~, as we shall see in Sec- 
tion 5), T is a continuous twist map, and 

' .  ] 
G =t- ~ cp _ - ~ sm(2cp _ ) + B,(2 sin cp _ C(cp + )) (16) 

where cp_+ =�89 ___~Oo). Note that for a circular boundary ( 2 = 1 ) ,  C = I  
and G depends only on q~l-  q~o. Thus, the billiard becomes integrable, 
which is geometrically obvious. 

In order to give a physical interpretation to G, let us recall that 
the momentum, which is canonically conjugate to the position, is given 
by 

p=~x=mic  + q A =  m.~'-~qBy, mfi+-~qBx (17) 

Thus, it would have been physically more natural to use, instead of the 
tangent velocity u, the tangent momentum 

1 1 (pl t (s))=u+x--(X(s) Y'(s)--X'(s) Y(s)) (18) P -= - m--v Zlt 
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Indeed, p and s are conjugate since they admit as a generating function the 
reduced action along the arc y: 

F= fr(p l dx)=mv lrds +-~ (y d x - x  dy) =~ dF=mv(po dso-p ,  ds]) 

(19) 

It is, however, more convenient to use u instead of p. Green's theorem 
implies that the generating functions are related by 

mvG = F+ �89 ;~,Qy dz - x  dy (20) 

where yQ is the piece of boundary connecting Po to P~. 
One application of generating functions is in perturbation theory. 

Suppose the map T~ depends on a parameter t (controlling the magnetic 
field or the shape of the boundary), such that the behavior of T o is known 
(e.g., integrable). Approximating T~ by its expansion To + e0~ T~ I~ =o does 
not in general lead to an area-preserving map, whereas the map generated 
by G(So, sl,  0) + tOnG(So, sl, t)]~=o is always conservative. 

For example, the generating function for an elliptic boundary close to 
a circle, given by (15) with 2 =  1 +e,  is 

G = Go(~O _ ) + eGl(q~ +, q~ _ ) + O(~ 2) 

Go(q~_) ~o_ + ~  sin(2~o ) + B.(2 sin ~o_) (21) 

[ ] ( )": G](~o+,~o_)= 1 ~o_+~sin(2~o ) + 2 s i n ~ o  sin-'~o+ 1 sin2~~ 

Another use of generating functions is in searching periodic orbits. If 
we define the n-point generating function 

GI"l(so, sl ..... s ._l)=G(so, sl)+G(sl,s._)+ ... +G(s,,_l,so) (22) 

then the law of specular reflection implies that every periodic orbit con- 
taining no pdints with s e E2 is a solution of 

- - =  . . . . . .  0 (23) 
OSo OSl Os._ t 

which is a system of n nonlinear algebraic equations of the n variables 
SO ' " ' ,  S n -  1 �9 
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It is convenient to "lift" the periodic variable s to the real line. An 
(m, ii) periodic orbit is then defined by s,  = So + m ]0QI, u,, = Uo, and its fre- 
quency co = (1/IOQ]) limk_ ~(sk/k) is equal to m/n. The possible frequencies 
belong to an interval I~o, depending on the behavior of the boundaries 
u = + 1 of the phase cylinder. The first results on the existence of periodic 
orbits for continuous area-preserving twist maps were due to Poincar6 and 
Birkhoff. Powerful developments were achieved by Aubry and Le Daeron, 
Mather, MacKay and Meiss, and Katok (see ref. 11 and references therein 
for more details): 

1. For every m, n, m/n ~ I~, there is at least one (m, n) periodic orbit 
which is "maximizing." This means that every finite orbit segment (sk ..... s/), 
l~>k+2,  is a global maximum of i-1 Zj=k G(sj, sj+ i) with respect to varia- 
tions of sk+~ ..... s/_ 1. In particular, (So ..... s,,_ 1) is a global maximum 4 of 
G~"( If the maximum is nondegenerate, the orbit is hyperbolic. 

2. For every m,n ,m/n~I ,o ,  there is at least one (re, n) periodic 
orbit which is "maximin." This means that the Hessian matrix of 

/--1 Zj=k G(sj, sj+ 1) has one single positive eigenvalue. The orbit is either ellip- 
tic or inverse hyperbolic (Tr S,, < - 2 ) .  

3. Every orbit on a rotational invariant circle is maximizing. For  
every irrational co~I,o, there is a maximizing quasiperiodic orbit of 
frequency co. Its closure is either an invariant circle or an invariant Cantor 
set. This result is in some sense stronger than KAM theory, since it shows 
the existence of quasiperiodic orbits for twist maps that are not necessarily 
nearly integrable. 

To summarize: if the bouncing map is a continuous twist map, its 
generating function provides a useful tool to do perturbative as well as 
variational calculations. In particular, we have a lower bound on the 
number of periodic orbits of period n (namely twice as many as there are 
integers m coprime with n such that m/n~Io,), whose stability can be 
related to the second derivative of the generating function. 

As we shall see in the next section, an important class of maps satis- 
fying the twist property is given by bouncing maps of billiards with 
smooth, convex boundaries in low magnetic field. The bouncing maps of 
many billiards, however, are either not twist or discontinuous. Never- 
theless, generalized versions of the generating function can be useful 
tools in some of these cases as well, as we will see in Sections 5.3 
and 6.2. 

4 Second variations of G can be computed using (A5) and (A6). 
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5. SMOOTH CONVEX BOUNDARIES 

5.1. Qualitative Behavior 

We say that OQ is smooth and convex s if p(s) is a smooth function (in 
a sense that we will have to specify) and is bounded by positive constants: 
0 < p mi, ~< P(s) ~< p max < ~ VS. For  example, for the ellipse ( 15 ), p n,i. = 2 - 
a n d  Pmax = 22. 

Robnik and Berry 1 is~ proposed to classify the dynamics by comparing 
It  tO Pmin and p.,a.~. If  we consider specifically the twist property, by looking 
at trajectories with fixed so and varying u o (Figs. 4 and 5), we obtain the 
following "curvature regimes": 

1. If lt >~Pma.,, the function s~(so, Uo) is increasing in Uo, so that T is 
a twist map. The curve { T(so, Uo), - I < u0 < I } turns exactly once around 
the phase cylinder, with lim,,o~ +1 T(so, uo )=  (So, uo). Thus. Io~ = [0, 1]. 

2. If P min <1 t < P . . . . .  discontinuities in the map  occur when the tra- 
jectory becomes tangent to the boundary, We have lim,,0~ +~ T(s 0, Uo)= 
(so, Uo), but this is not necessarily true for Uo--* - 1 .  In Appendix C, we 
illustrate the construction of the discontinuity lines of the map. 

3. I f l t  ~P,~in, the function s~(s o, Uo) is first decreasing in Uo, reaches 
its minimum when X=n/2,  and increases again. We again have 
lim,,o~ +1 T(so, u0) = (So, Uo), so that there are exactly two trajectories with 
supplementary Z for given So, s l. The map is no longer twist. On can expect 
that the frequencies belong to an interval I,o = [comic, 0], where com~, ~/ l .  

Figures 4 and 5 illustrate this behavior in the case of an elliptic bound- 
ary. 6 We see that there always exist invariant curves near u = + 1, corre- 
sponding to trajectories with caustics (the "whispering gallery modes"). For 
/t >~p .. . .  and ,tt ~ P m i n ,  such curves also exist near u =  --1. However, when 
p,,~, </ t  < p,,,~, the tori near u = - 1 are replaced by a chaotic region. This 
behavior can be heuristically understood by noting the following two 
points: first, discontinuities of the map  due to tangencies may destroy 
invariant curves in an analogous manner as discontinuities due to corners 
of the boundarylSl; second, the Jacobian matrix (7) diverges like 
( u +  1) -~/-', causing strong dispersion of nearly tangent orbits, which can 
be a source of positive Liapunov exponents. 

5 For  brevity, we omit the word "strictly." 
The billiard in an ellipse has the particularity to possess two integrable limits. In the circle 
limit 2 = 1, u is a constant  of motion,  as we noted in the previous section. In the zero-field 
limit it = c~, the product  of  the angular  momen ta  with respect to the loci is a constant,  
which can be written L = C2(~o)(u -' - I) + 1. 
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Fig. 4. Trajectories in an elliptic boundary, with constant So and varying u0: (a)/t >~p ..... 
(b) Pmin<l.t<Pmax, (C) /.t ~<Pmin. Trajectories with uo near -1:  (d) trajectory with caustic 
for /t~>p . . . .  (e) chaotic trajectory when Pmin<It<Pmax, (f) trajectory with caustic for 
It ~< Pmi.. 

Robnik  and Berry have compu ted  an adiabatic &variant, which tends 
to be conserved if [Kp(1 - u2)1/2/( 1 + Kpu)[ ~ 1: 

K(s, u) = pK(s) + u ( 3  - -2u  z) 
(1 --U'-) 3/2 (24) 

and gives a very good  approx ima t ion  of  the invariant  curves for u ~ + 1. 
As it turns out, in the strong-field limit Ftx ~ I, K tends to be conserved for 
all orbits, so that  this limit seems to be integrable. In the following, our  a im 
is to delineate the validity of  these s ta tements  and m a k e  them more  precise 
by using different per turba t ive  approaches .  

5.2. Near the Boundary 

We recall that  for Euclidean billiards, the existence of  invar iant  curves 
and caustics near  the bounda ry  was first demons t ra ted  by Lazutkin,  ts) who 
had to assume a high degree of differentiability. D o u a d y  ~4~ reduced the 
required degree to 6. On  the other  hand,  Hubache r  t6~ proved  that  no 
caustics exist near  a bounda ry  whose curvature  is discontinuous,  and 
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Mather ~~ found that if the curvature of the boundary vanishes at one 
point, then invariant curves are totally absent. 

We are now going to investigate the behavior of the bouncing map of 
billiards in nonzero magnetic field near their boundary, i.e., for small 
sin 00. In this way, we will be able to apply KAM theorems to show the 
existence of invariant curves. The results are summarized in Theorem 1 at 
the end of this section. 
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Fig. 5. Structure of phase space in the (cp, u) plane for the ellipse. Image of the line (~o = ~0", 
- 1  ~<u~<l): (a) /2 >lPmax, (b) Pmin</2<Pmax, (C) /2 ~Pmin. Typical phase portraits: 
(d)/2 ~>Pm,~, (e) Pmin <~/2 <Pmax, (f) /2 ~Pmin. 
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I f  we write z(s) = X(s) + i Y(s) and z; = z(si), ri = r(s~), we have 

fSl f f l  
Z 1 - - Z  o = e it(s) ds = p ( r ) e  i~ d r  

,';0 0 
(25) 

Since the z,. also belong to the arc of  trajectory,  which has tangent  
directions ro + 0o at Zo and r~ - 0~ at Zl (see Fig. 2), we have 

B _ e l ( to  + 0o ) ]  Z I --Z 0 ~-"7" [e  its1 -o,) (26) 
1 

In t roducing  A = e - i r ~  - Z o )  and 6 = r l  - ro - 01 + 0o, we can rewrite this 
a s  

e i ~ -  1 
A - -Be  -iO~ . = --2B sin 0o (27) 

1 

which is equivalent  to the system 

R e A  ,, sinfi  + p ( c o s ~ - l ) = - 2 p  
sin 0-~--B cos Vo sin 0----o 

(28) 
Im A sin 6 cos ~ - 1 

sinE Oo+P si--~o+B cos 0o ~ n T ~  ~ - 0  

I f  the bounda ry  is C k, this is a system of  C k -  ~ equat ions  in the variables 
So, 0o, s~, 01 which we would like to solve with respect to s~, 0z. 

Writ ing s~ = So + sin 0o Btr and 0~ = 0 o + sin 0o BY, we obta in  for k/> 3 

i 
A = sin 00 Ba  + 2 sin2 0~ B2a2K(S~ + O(B3 sin3 0~ 

= s i n  Oop[X(So)a--?] + O(p  2 sin 2 00) 

(29) 

Replacing this in (28) finally leads to the system 

a - B  cos 0 o [X(So)a--)'] + O(sin 0o) = - -2  

a2x(so) + 2[x(so)a -- ~,] - -B cos 0o [X(So)a -- y] 2 + O(sin 0o) = 0 
(30) 

which has the solution 

- -2  
a(So, Oo,p) = 

1 - p  cOS0o X(So) 
t- O(sin 0o) 

(31) 

y(So, 0o, B) = O(sin 0o) 
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Since the Jacobian of (30) evaluated at this solution is - 2  + O(sin 0o), the 
implicit function theorem implies that for small sin 0o, the bouncing map 
is C k -  ~ and has the form 

2p sin Oo 
s l = s o  1 - p c o s O o x ( S o )  + ~ 1 7 6  (rood IOQI) (32) 

01=Oo+o(sin 0o) 

However, this formula is only valid if we are able to check two properties: 
First, the approximation must be well defined, i.e., the denominator in 
the first equation should not vanish. Second, the solution (31) has to be the 
"right" one, that is, the f i r s t  intersection of the trajectory with the 
boundary, following the motion of the particle. We have to distinguish 
between the following cases: 

1. Near  u =  +1: Writing O = n - q ,  we find that (32) becomes 

2~ 
s, =So r/o+O(~/o) (mod IOQI) 

1 + #It(s0) (33) 

r/~ = qo + o(y/o) 

Here the denominator can never vanish. Moreover, this solution corre- 
sponds geometrically to a short skip of the particle backward along the 
boundary, so that it certainly describes the first encounter of the trajectory 
with aQ. 

Note that this equation is well defined even when the curvature is 
allowed to vanish. Only when It = ~ does the first equation become 
sl  = S o -  [2 Ix ( so ) ]  ~/o + o(~/o), which diverges when x ~ 0, which is coherent 
with Mather's result. 

The change of variables ~ o = s + p r ( s ) ,  r=2pr/  is well defined and 
transforms the map into 

q~ t = q~o - ro + O(ro) 

rl = ro + O(ro) 

(mod [OQI +2np)  
(34) 

2. Neat" u = - 1 :  The map has the form 

s l = s 0  1-pX(So) 0~176176 (mod [0Q[) (35) 

01 = Oo + O(0o) 
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This time, we have to be careful with the denominator, which may vanish. 
The approximation 0 ,~ 1 is only valid in two cases: 

(a) If p>~Pmax(l +B), ~>0, then in the variables ~ = p z ( s ) - s ,  
r=2pO, the map becomes 

~i=~o+ro+o(ro) 

rm=ro+o(ro) 

(mod 2up -IOQI) 
(36) 

We again obtain the right intersection, because the particle is skipping 
forward along the boundary (Fig. 4d). 

(b) I fp  ~<Pmin(1 --e), then in the variables cp =s--pr(s), r=2pO, the 
map reads 

~o I =~oo-ro+o(r0)  (rood 10QI-2~zp) 
(37) 

r l  = ro + o(ro) 

This time, the particle is starting with a forward glancing velocity, but 
reaches the boundary behind its starting point (Fig. 4f). It is not obvious 
that there is not another intersection of the trajectory and the boundary 
in between. Luckily, Lemma D1 in Appendix D shows that this cannot 
happen, because any circle of radius tt < Pmin cuts OQ at two points at most. 

The maps (34), (36), and (37) can now be treated by KAM-type 
theorems (ref. 12, p. 52, or ref. 4, p, II1-8). In this way, we obtain the 
following result: 

T h e o r e m  1. Consider a magnetic billiard in a domain with C k 
boundary, k~>6, such that O<Pmi.<<.p(s)<<.pma.~<~O0. Let e e R *  and 
assume that one of the following is true: 

1. O<g<~,rl=Tr-& L=lOQl+2n#,a=-l .  

2. Pmax(l +e)~<p<o~,  rl=O, L=27rp-lOQ[, at= +1. 

3. O<~t~Pmin(1--e), rl=O, L=lOQ[--2zrp, a= --1. 

Then, there exists ~ >0  (depending oft ~ and k) such that, if a~e ~0, e~) 
and satisfies the Diophantine conditions 

L - q  ~>yq-~ (38) 
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for some 7, v E R* and for any p/q ~ Q, there is an invariant curve of the 
form 

s=~+ v(~) 

co (39) 

where U, VEC ~, V ( ~ + L ) = V ( ~ ) + I O Q [ - L ,  U(~+L)=U(~).  The 
induced map on this curve has the form 

~--*~ +a~o (40) 

This theorem confirms our observation that invariant curves exist in 
three cases: 

1. Near  u = + 1 (0 = n), for all values of the magnetic field (see the 
upper parts of Figs. 5d-Sf). They correspond to backward-skipping trajec- 
tories, the curvature of which is opposite to the curvature of the boundary. 

2. Near  u = - 1 (0 = 0), in weak magnetic field [p />  P,~ax( 1 + e), see 
the lower part  of Fig. 5d]. They correspond to forward-skipping trajec- 
tories (Fig. 4d), which are curved away from the boundary. 

3. Near  u = - 1 (0 = 0), in strong magnetic field [ p  ~< Pmi,( 1 - e), see 
the lower part  of Fig. 5f]. They correspond to backward-skipping trajec- 
tories (Fig. 4f). 

For  intermediate values of the magnetic field, there seem to be no tori 
near u = - 1. Although we have a qualitative understanding of the origin of 
this phenomenon, we are not able to prove the existence of a stochastic 
component  of positive measure in this region. This remains an open 
problem. 

On the other hand, our theorem implies that magnetic billiards in 
smooth (i.e., C 6) convex domains can never be ergodic. Unlike in zero 
field, this remains true even when the curvature of the boundary is allowed 
to vanish. In fact, Eq. (33) suggests that invariant curves exist near u = + 1 
even when the boundary has slightly concave parts, i.e., K(s) > / - K o ,  Ko > 0, 
and for IZ ~< 1/,x0-e. In that case, however, the tori near u = -  1 do not 
necessarily survive. We will come back to this point in Section 6.2. 

5.3. The  S t r o n g - F i e l d  L imi t  

The limit tt --' 0 is in some sense singular: indeed, for small p, the dis- 
tance between successive collisions with the boundary is of order p, so that 
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one could get the impression that the particle follows the boundary more 
and more slowly when p decreases, and sticks to the wall when p = 0, 
violating the conservation of energy. Of  course, this is only an artificial 
effect, due to the fact that we use the bouncing map instead of the flow 
to describe the dynamics. Indeed, the "time of flight" between successive 
collisions is also of order p (more precisely, it is equal to p~,  where ~ is 
given in Fig. 2), so that during a given time interval, the particle hits the 
boundary O(l /p)  times, traveling a finite distance. 

Thus, we have to be careful when we apply perturbation theory. It is 
possible to use (28) to analyze the limit p ~ 0 .  However, we give in 
Appendix D an alternative approach that we find more instructive. The 
idea is to show that although the map is not twist, it can be described by 
generating functions, in fact two of them, with suitable matching at X = n/2. 
These functions are of the form G• s , , p )  +pgo(a)+ " • = - P-g1 (a, so, p),  
where a =  (So-s~)/lt .  Replacing this in (10), we see that a and u are "slow" 
variables which evolve on a much longer time scale than s. This expresses 
the geometrical idea that for a short skip, the boundary is close to an arc 
of circle, for which a and u are constants. It is, however, necessary to 
use the variable 0 instead of u if we wish that the map be smooth at the 
boundaries of the phase cylinder. Finally, we obtain the following result: 

Proposition 3. Consider a magnetic billiard with a convex, C k 
boundary, k/> 3. For  small enough iz, the bouncing map is C A- ~ and has 
the form 

sl = s 0 - 2 p  sin Oo+p'- sin 0oa(s0, Oo, p)  (rood 1OQI) 
(41) 

01 = Oo +It'- sin 2 0o b(so, 0o, p)  

The functions a ~ C  k-'- and b E C  k-3 are uniformly bounded for s e R ,  
0 ~< 0 ~< n, laQI-periodic in s, and admit the expansions 

k--3 

a(s, O,p) = ~, ai(s, O)pi + O(p k-2)  
i=o (42) 
k--4 

b(s'O'lt)= Z bj(s'O) ItJ+O(P 1"-3) ( k ~ > 4 )  

j = o  

where the first terms are 

a o = - 2  cos 0 K(s) 

al = - ~[( 1 + 2 cos 20) h(s) 2 - sin 20 K'(s)] 

bo = 3h"(s) (43) 

bl = ~ cos 0 x(s) K ' ( s ) -  ~ sin 0 h'"(s) 
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Equation (41) shows that the bouncing map in strong magnetie field 
behaves like a perturbed integrable map. To zeroth order in/z, it reduces 
to identity. To first order in p, it still has the integrable form 0~ = 0o, 
s~ =So+/d2(0o) ,  where t 2 ( 0 ) = - 2  sin 0. However, in contrast with usual 
integrable systems, the frequency f2 is multiplied by the small parameter p. 
As for the factors sin 0 occurring in (41), they assure that the boundaries 
0 = 0, rt are fixed. 

The behavior when p ~ 0 can be understood in the following way: fix 
some positive/to and define S=por p, gt(q~, O,p)=a(ltorp, O,i.t), "b(~o, O, it ) = 
b(por p, O, l.t). Consider the two-parameter family of maps T~,0.~,: 

cpl = (,o o - 2 sin Oo + p  sin Oo c~(Cpo, 0o, p) 

Oi = Oo +p2  sin'- Oo b(cPo, 0o, p) 

mod [OQI) (44) 
/to 

The map T~,o. o is integrable, 0 being a constant of motion, and it takes 
about n(O)= laQl/(2po sin 0) iterations for ~o to turn once around phase 
space. T~,o.~, o is equivalent to (41), and one can expect that when P0 is 
small, some features of the integrable map remain, in particular, the par- 
ticle completes one turn after roughly n(O) bounces. Using (A2) and (41), 
we obtain that ~ = 2Z = 2 n -  200 + O(p), so that the time necessary for one 
revolution is of order t~n(O)po~~lOQl(z~-O) / s inO,  which does not 
depend o n / t  to lowest order. Note an important difference between the 
skipping regimes u ~ + 1 and u ~ - 1: in the first case, t ~ IOQI, whereas in 
the second case t ~  IOal n/O diverges when u - - * - 1 .  The variation of 0 
during t is of order n(O)(O,-Oo)~pos inO,  which shows that our 
approximation is consistent, since 0 is an adiabatic invariant on the time 
scale t. 

We have the choice between two different perturbative techniques to 
make these observations mathematically precise. If we exclude some 
neighborhood of 0=~ /2 ,  where the frequency I 2 ( 0 ) = - 2 s i n 0  has a 
vanishing derivative, we can apply Moser's theorem (ref. 12, p. 52): if the 
boundary is C k, k >/6, then there exist invariant curves for every frequency 
satisfying some Diophantine condition. 7 In this way, however, we cannot 
describe trajectories starting with a very small tangential velocity (0 ~ re/2). 
In order to do this, we will apply another technique to study (41), coming 
from adiabatic theory. We will prove in Section 7 the following theorem on 
a class of maps of the annulus: 

7 One advantage of Moser's theorem is that the map need not preserve an annulus. 
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T h e o r e m  2. (An adiabatic theorem for maps). Let the map 
T: (~Po, I0, It) - (~Pl, Ii), 

~P l = ~Po + itC( Io)[ ~2( lo, It) + It~x( Cpo, lo, It)] 
(45) 

I, = Io + it~-C( Io) 2 ~( ~Oo, lo, It) 

be defined on the set E = { (~p, L It) I ~P ~ R, 0 ~< I ~< 1, 0 ~< It ~< It* }. Assume 
that ~ and fl are periodic functions of ~p with period 1, c(0)= c ( 1 ) - 0 ,  and 
t2(L O) = .r ~ o. 

Then there exists a change of variables (~p, I) ~ (ff = ~p +Itf(~o, L It), 
J =  1+tic(1 ) g(q0, L It)), preserving the square [0, 1 ] x [0, 1 ], where f and 
g are periodic with period 1 in ~p, such that: 

1. If T is analytic in a complex neighborhood of E, then 

~kl = ~o + ItC(Jo)[ O( Jo, It) + e-I/c"0Z(~k0, J0, It)] 
(46) 

JJ = Jo + It2C(Jo)2[ 6)(Jo, It) + e -  l/c~,fl(@o, Jo, It)] 

2. If, moreover, T preserves the measure c(I)p(~o, Lit)d~p dl, where 
p(~o, L 0) = 1, then 

J~ = Jo + e-~/C~'C(Jo)2 fl(t~ o, Jo, It) (47) 

3. If 0c,/~, and /2  are C k and c is C k +l in E, then 

~k l = ~ o + ItC( Jo)[ ~ (  Jo, It) + lt~ + l Y~( r o, Jo, It)] 
(48) 

J, = Jo + It2C(Jo)-'[ O(Jo, It) +/~/~(r Jo, It)] 

and respectively, 

Jl = Jo + f '  + ~-C(Jo) 2 fl(r Jo, It) (49) 

if T preserves the measure c(I) p( cp, I, It) dcp dI. 

Equation (45) describes a map from the annulus 0 ~<I~<1 into itself 
(the choice of 0, 1 is arbitrary and can be changed by scaling). Indeed, the 
factor c(I), which vanishes at 1= 0, 1, assures that the boundaries of the 
annulus are fixed, and for small enough It, the interior of the annulus is 
invariant. In (45), the terms containing the phase ~p, which make the map 
nonintegrable, are of order / t  ~-. The theorem states that a suitable change 
of variables decreases this order to Itk+2 if the map is C ~ and to the 
exponentially small order e-~/c~, if the map is analytic. 

The method of the proof is similar to that used by Nehoroshev and 
Neishtadt (see ref. 2, p. 163, and references therein) in the case of differential 
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equations. The basic idea is to make successive changes of variables that 
each decrease by one unit the order of the terms containing the phase q~. 
If the map is C k, one can repeat this procedure k times. If it is analytic, 
divergence prevents us from applying the procedure infinitely often, but it 
is possible to do it a large number of times, of order 1lit, so that the terms 
containing the phase become exponentially small. 

We can now apply the theorem to the bouncing map (41) of billiards 
in strong magnetic field, where c(O) = sin 0. Because of Proposition 1, the 
map preserves the measure sin 0 ds dO, and can thus be transformed into 
the form (47) or (49). If we write Ji=J(si ,  0~), we obtain the following 
result. 

C o r o l l a r y .  Consider a magnetic billiard in a convex domain. If the 
boundary is C k, k >1 3, then there exists a function J*k~(s, O) such that j~k~ = 
J~ok~+ O(it k-  '). If the boundary is analytic [in the sense that x(s) can be 
analytically continued to a complex neighborhood of the real axis], then 
there exists a function J(s, O) such that J~ = J o +  O(e-~/cJ'). In any case, 
this function can be written in the form J = O + p  sin Og(s, O, it). 

If the boundary is C k, k >~ 3, this result implies that after n bounces, we 
have J, ,=Jo+nO(itk-1),  and hence if n=O(i t2-k) ,  J ,=Jo+O(i t ) .  In 
other words, the quantity J is a "quasiinvariant" or "adiabatic invariant" 
which varies by an amount of order It for O(fl E-k) bounces, i.e., during a 
time of order It3--k. In the analytic case, J varies on a time scale growing 
exponentially with the magnetic field. In contrast with KAM theorems, 
which show the existence of exact invariants for some initial conditions, the 
adiabatic theorem shows the existence of approximate invariants for all 
initial conditions. 

In fact, the theorem not only shows the existence of quasiinvariants, it 
also enables us to compute them up to the first orders. For  example, after 
two changes of variables [given by (52)-(54)],  we obtain 

JIS)(s, O, It) = 0 +It sin 0[ �89 + 9It cos 0 K(s)-'] (50) 

To zeroth order in It, we recover that j/3)= 0 is an adiabatic invariant on 
a time scale of order 1. To first order in It, jt4~ corresponds to the invariant 
(24) of ref. 15, 8 which is valid for a time of order It-~. As shown in Fig. 6, 
the orbits are very close to the level lines of jIs~ even when It is of the same 
order as Pmin' The dynamics on the quasiinvariant curve J(s, O)=Jo is 
approximated by ~'l = ~bo +itC(Jo) ~(Jo, It). 

Namely, K = f(j~4,) + O(it,_), where f(J) = -cos J( 1 + 2 sin 2 J) sin-S j. 
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Fig. 6. Adiabat ic  invar iant  in the strong-field limit: (a) some  orbits  of  the billiard in an  
ellipse for p = 0.3, ), = 1.5 (i.e., p,,,~,, = 2/3), (b) level lines of  the adiabat ic  invar iant  (50), which 
are given by 0 = J - p  sin J [~x(s )  + ~It cos J x(s)  2] + O(p3). 

In Section 6.2, we will say a word on adiabatic invariants for billiards 
in nonconvex boundaries. Quasiinvariants can also be used to study 
billiards with piecewise smooth boundaries. As long as the particle hits the 
same smooth piece of the boundary, the corresponding quasiinvariant 
changes slowly, so that one can estimate the outcoming velocity. However, 
as soon as the particle passes from one smooth piece to another one, a 
jump of the value of J occurs. This is particularly clear in the stadium, 
where J = 0 is even an exact invariant on each straight line and arc of a cir- 
cle. The jumps of 0 occurring at the junction points allow the particle to 
explore a large fraction of phase space (see also ref. 14). Thus, billiards in 
insufficiently smooth, convex domains do not become integrable in the 
strong-field limit (as suggested in ref. 13). 

6. M O R E  C H A O T I C  B I L L I A R D S  

6.1. The  Bi l l iard in a Square  

Billiards in convex polygonal domains in the presence of a magnetic 
field can be expected to show a chaotic tendency because we will always be 
in the regime 0 =Prnin </l <Pmax = 0(3. 

We have concentrated on the case of a square of side length 1. This 
billiard is integrable in zero field, where every periodic orbit is parabolic. 
In fact, the periodic orbits occur in families, which can be indexed by the 
slope of the trajectory, and whose members can be indexed by the 
arclength of any collision with the boundary. 
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Fig. 7. Periodic trajectories in a square. Trajectories of period 4: (a) type I, (b) type II, 
{c) type IIl, (d) asymmetric trajectory at g=0 .502 ,  bifurcating with type I at 11=1/2. 
(e) Trajectory of period 12 which bifurcates with type 1 when ~t = v/5/2. (f) Stable symmetric 
trajectory of period 4k, k = 2 for/~ = I/4. 

In low magnetic field, only isolated orbits subsist, some of which are 
hyperbolic and some elliptic (Fig. 8a).  9 When the field increases, most of 
the latter vanish or get unstable, and the structure of phase space is 
dominated by symmetric period-4 orbits (Figs. 7a_-7c): type I exists for 
/.t~> 1/x/~, type II f o r / t >  1/2, and type III for 1/x/8~/t < 1/2. 

Using (7), we find that type II and type III orbits are hyperbolic, 
except for ~t = l /v/8,  where type III and type I orbits undergo a saddle- 
node bifurcation. For type I orbits, we find that the stability matrix satisfies 

1 1 1 - ( 8 / l  2 - 1) '/z 
-~TrS4=8t4-8t2+l,  t = ~ T r S , = l + ( 8 g t 2 _ l ) U  2 (51) 

so that these are elliptic, except fo r / t  = 1/x/~ (saddle-node bifurcation), 
= 1/2 (bifurcation with four elliptic and four hyperbolic asymmetric orbits 

of period 4, Figs. 7d, 8b), and/~ = �89 + 2x,/2) '/2 (no bifurcation). 
An interesting resonance phenomenon occurs when It = x/~/2. Then $4 

is a cubic root of 1, and the type I orbit becomes unstable because of a 
"squeeze effect" bifurcation (ref. 1, p. 392) with a hyperbolic orbit of 
period 12 (Figs. 7e, 8d-8f). ~~ Numerical simulations show no other stable 
periodic orblts in this case, leading us to the conjecture that the billiard in 

9 The first correction to the zero-field generating function goes like the magnetic flux through 
the trajectory, i.e., the signed area enclosed by the trajectory. For orbits whose period is a 
multiple of 4, it can be seen that this area varies quadratically with the arclength indexing 
the orbit. 

~o The same kind of bifurcation affects the small diametral orbit in the ellipse when 2 =2 ,  
Vl~> 1. 
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Fig. 8. Phase portraits of  the billiard in a square. (a) It =30,  (b) i t=0.502,  (c) l l =  1/4. 
"Squeeze effect" bifurcation around/~ = ~rg/2 = 1.118... : (d) It = 1.25, (e) It = l . l l  8, (f) ll = 1. 

0.0 o.I 0.2 0.3 o.n 0,5 0.6 0.7 0.8 0.9 [.0 [.[ [.2 [.3 [.4 p 

Fig. 9. Numerically estimated proportion of the regular component  in phase space for the 
billiard in a square, as a function oflt.  Actually, we show the relative area of phase space not 
occupied by one chaotic orbit, with a precision of 4 • 10 -6. 
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a square is ergodic for this particular value of/2. Figure 9 illustrates this 
phenomenon by showing a numerical estimate of the size of the regular 
component of phase space, which vanishes for/2 = ~/5/2 ~ 1.118 .... 

There are no orbits of period 4 when/2 < 1/,v/-8. However, stable orbits 
of higher period exist for arbitrarily high values of the magnetic field. 
Figure 7f shows a symmetric trajectory of period 8, doing two bounces on 
each side of the square. We can construct similar trajectories of period 4k, 
k >/1, reflected k times on each side. Detailed calculations (see Appendix E) 
show that such orbits are stable for almost all/2 in some interval containing 
1/(2k), but these intervals do not overlap when k >2,  leading us to the 
assumption that mixed and ergodic behavior alternate for decreasing It. 

6.2. Boundar ies  w i t h  N e g a t i v e  C u r v a t u r e  

In Sinai billiards, whose boundaries have negative curvature, it is 
known that all periodic orbits are unstable in zero field [as is suggested by 
the fact that Tr(DT)~< - 2  if we put X = 0  in (7)]. This is no longer true 
in nonzero field, because the curved trajectories, although locally dispersed, 
may converge again. 

Let us first consider billiards outs ide  smooth convex boundaries with 
extremal radii of curvature ,Omi n and /)max" If we fix a trajectory of the out- 
side billiard and complete every arc of a trajectory to a full circle, we 
obtain its "dual trajectory" as the set of all complementary arcs. If the dual 
trajectory never crosses the boundary, then it corresponds to a real trajec- 
tory of the inside billiard, since the law of specular reflection is satisfied by 
construction. A sufficient condition for this to be true is that any circle of 
radius It can intersect the boundary at most twice. In this section, let us call 
this the "it-intersection property." This property is actually satisfied in two 
cases: in strong field it ~<Pmin (as we prove in Lemma D1 of Appendix D), 
and in weak field it/> Pmax (as can be proven in a similar way). In these 
cases, to any orbit (.. .(s_l, u_~), (So, Uo), (sl, u~)...) of the outside billiard 
there corresponds the orbit ( . . . ( - s l ,  - u l ) ,  ( -So ,  -Uo), ( - s _ l ,  - u _ l ) . . . )  
of the inside billiard, and reciprocally. Thus, the billiards inside and outside 
the boundary are perfectly equivalent, so that we can apply our results of 
Section 5 on the existence of invariant curves and adiabatic invariants 
(Theorem 1, Proposition 3, and the corollary of Theorem 2). In particular, 
the billiard outside a circle is integrable. 

For intermediate values of the magnetic field (Pmin</2<Pmax), the 
dual of any outside trajectory will not necessarily be an inside trajectory. 
However, the equivalence is true for some special trajectories, namely those 
which are sufficiently close to u = + 1 for the inside billiard (and remain so 
because of Theorem 1 ). 
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Fig. 10. The billiard outside two circles: (a) chaotic trajectory, (b) one of the few stable tra- 
jectories. 

Consequently,  we predict that  if we compare  the phase portrai ts  of  
the billiards inside and outside a given smooth,  convex curve, they will be 
the same (up to an inversion) for P~Pmin and P>~Pm,x. When Pmin< 
p < p . . . .  the region u ~ 1 of  the interior portrai t  will be the same as the 
region u ~ - 1  of  the exterior portrait ,  but  other  parts of  them will be dif- 
ferent. 

Let us consider next the case where the boundary  OQ has bo th  convex 
and concave parts, but  a bounded  curvature: Ix(s)[ ~<~Co= 1/Pmi n Vs. We 
can argue by means of  geometrical properties that  such a billiard must  pos- 
sess invariant tori and adiabatic invariants in sufficiently s trong magnetic 
field if OQ is smooth  enough. It should be clear that  the interior o f  the 
domain  has to be connected,  since otherwise we would have several inde- 
pendent  billiards. We can thus define r* such that  the p-intersection 
proper ty  is satisfied for p ~<r*. I~ This radius has to be positive but  can be 
arbitrarily small (consider billiards shaped like hourglasses or  peanuts). 

In Section 5.2, we already ment ioned that the expression (33) of  the 
bouncing map near 0 = rE can still be valid if p < Pmin( 1 - e ) ,  namely if 0 is 
sufficiently close to rt that  the trajectory remains within a distance 2r* of  
the boundary.  Thus, invariant curves still exist near 0 = n. Fur thermore,  we 
note that  the only point  in the p roof  of  Propos i ton  3 where we use the con- 
vexity of  the boundary  is to show the p-intersection property.  This is 
actually satisfied for p <~ r*, so that  we conclude that Propos i t ion  3 and its 

~ Note that the bouncing map is continuous iff the p-intersection property is satisfied. Indeed, 
discontinuities by tangency exist iff one can construct a Larmor circle tangent to the 
boundary and intersecting it at two other points. 
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consequences on adiabatic invariants remain true in the present case for 
sufficiently small It. 

Finally, we also studied the billiard outside two circles of radius 1, 
centered at (0, +2)  (Fig. 10). If 2 >  1, it is important to note that M~ 
defined in Section 2 is not the only integrable component of phase space. 
Indeed, trajectories with u > u *  =min{ 1, 2 2 -  1 - 2 2 ( 2 -  1)/it} always 
touch the same circle, so that u is a constant of motion. In particular, when 
It < , t - 1 ,  the billiard is integrable. When It > ) . - I ,  the map is discon- 
tinuous whenever trajectories become tangent to the boundary, and 
numerical simulations show that the component of phase space u < u* is 
almost filled with a stochastic sea with positive Liapunov exponents. 
However, one can find stable periodic orbits for particular values of the 
parameters (see Appendix F), so that the billiard is not always ergodic. 

7. PROOF OF THE A D I A B A T I C  T H E O R E M  FOR M A P S  

7.1. Construct ion of the Change of Variables 

The change of variables is constructed as the composition of several 
elementary substitutions that each increase by one the order of the terms 
containing the phase. The number of these substitutions is k if the map is 
C k and of order [ 1/It] if the map is analytic. 

We assume by induction that after N steps the map reads 

q9 I = ~0 0 + ItC( Io)[ I2 N( Io, It) + itN + I O:N(~O0, I0, It)] 
(52) 

I, = Io + itC( Io )2[ it@ N( Io, It) + itN + ' fl g( ~P O , I0, It)] 

where we write ((p,I)=(9r for brevity, and I2N(I, I t )=  
f2 o + ItOg(/, It). We can assume that < a N > = ( fiN> = 0, where < F> = ~ ~ F d~p 
denotes the average of F. 

The change of variables ( ~p, I) ~ ($, J) = ( ~pl N + 17, I ~ N + I~) is defined by 

Ip ~- (tO + I t N +  if(ep, L It) 
(53) 

J =  I + It N+ ~ c(I) g(cp, L It) 

where 

f0 ~ 1 g(~0, L It) = ---~oflN(~O',I,p) d~o ' 

go(~O, L I t) = g(~o, I, It) - ( g ) ( I ,  It) 

f : [  1 ] 
f(~0, L It) = c'(I)go(qr dq~' 

(54) 
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We will use the following properties: 

1. If F(cp) ~ C I, then 

f • "  F( q~ ) dcp = ltC( Io)[ g2 N( Io, It) F( q~o) +Itrl(q~o, Io, It)] 
o 

=Ite( Io)[ g2oF( ~oo) + itr,_( q~o, Io, It)] 

Indeed, carrying out the change of variables 
obtains 

. 

(55) 

q~ = ~Oo + itC(Io)x, one 

;? [;? F(q~) d~  =:tC(Io) F(cp o) dx  
o 

fo 
+itC(Io) J~ N + 

If F( I )  ~ C ~, then 

F( Io ) = F( Jo ) + ItN + I C(io ) r3(CPo ' I0, It) 

r3 = --g(CPo, I0, It) F ' ( I ) .  where 
where Ro = [ 1 __ I t N  + l gc, ] -1 

Substituting (52) in (53), we get 

Ji - Jo =I tN+l[C( I I )  g(~oI, I I ,  It) -- C(Io) g(q~0, I0, lt)] 

+lt2C(I0)2[ OU(Io, I t) + itNflN((Po, Io, It)] 

Now, using the above properties, we obtain 

c(Ii) g(q~l, I t ,  It) - C(Io) g(cPt, Io,/1) 

= (11 - Io) Oz[c(I)  g(q~t, I, It)] 

=i t%(Io)  2 Rl(q~o, Io, It) 

C( Io) g( q~ l , Io, I t) -- C( Io) g( Cpo, Io, It) 

l ~' 
-- ~o C(/'o) fq, o f lN(q) , Io , i t )d~  0 

= - i tC( Io )  2 flu(q~o, Io, It) +i t2c(Io)  2 R2(~Oo, Io, It) 

C(Io) ON(Io,  lt) -- C(Jo) ON(Jo,  It) 

=ItN+I C(Io) Rs(~Oo, Io, lt) 

C(Io) -- c (J  o) ----ItN + I C(Io) r4((flo , Io, It) 

(56) 

In particular, C(Io) -- C(Jo) Ro(q~o, Io, It), 

(57) 

(58) 
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Replacing this in (57), we finally get 

Jl=Jo+it2C(Jo)2ON(Jo,it)+itN+3c(Jo)2 flN+l(~Oo, Io, it) (59) 

where ]~+1 =R2(RI  + R 2 + R 3 ) + R o R 4  and R 4 =  ONF4. The final step is 
to write /~N+I(CPo, Io, It)=fl~v+l(~'o, Jo, it), which can be done for small 
enough It, as we shall check later, and O^,+I=ON+ItN+I<fiN+I>, 

Proceeding in a similar way for ~,, we obtain 

~1-~o 

= itC( Io) O N( Io, It)[ 1 + itN + l c'( Io) go( ~O0, Io, It)] + ItN + 3 C( Io) R 5 

C( Io) ~ ~,( Io, It) 

= C(Jo) f2~v(Jo, I t) + It~v+ I C(Io)[ - g2N(Io, It) c'(Io) g(Cpo, Io, It) +i tR6]  

C(Io) c'(Io) f2N(Io, #)< g> (Io, It) 

= C(Jo) c'(Jo) QN(Jo, I t ) <  g>(Jo, It) --itC(Io) R7 

so that 

~I-=~O-t-ItC(Jo) DN(Jo, It)+ItN+3C(Jo)~N+,(CpO,[O,It) (60) 

where 0~N+ 1 = Ro(Rs + R6 + RT) and ~Jv = ~u (  1 _i tN+ 1c, ( g> ). Finally, we 
proceed in the same way as for fl in order to define ~N+~, 0cu+~. 

7.2. Bounds and Domains of Analyticity 

In the case where the map is analytic, we define 

F ( D ) = { ( 9 ,  I) IIImcpi, I I m l I < D , - D < R e I < I + D }  (61) 

We assume that for (~o,I)eF(DN) and [itl<ito, (52) is analytic and 
satisfies the bounds I~l, I/~1 ~<MN, I~1, IONI ~< WN. We introduce 
numbers D~v<D~<D~,  such that (~Oo, Io)~F(D~) implies (~o~,Ii), 
(~bo, Jo) ~ F(D'I~). Thus, D~, has to satisfy the condition 

, t "~l,~ r ..L �9 N + 2 L r  . N +  DN<~DN--komaX{ito-kit~,,N.l~ o lv.t  N , / z  o IMN} (62) 

From now on, the numbers ki, 2i, ci will designate constants which are 
uniform in N and It. Using Cauchy's inequality to bound the derivatives 

Fr D ,, , appearing in the expressions of the R~, we obtain that for (9o, Io) E ~ N), 
[Ri[ ~< K i, where 

822/83/I-2-8 
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1 
Ko = "1 - It~ v+ I ~.oM N 

Kl=21[Wu+t.t~Mu] MN 
Du-D'N 

[ N DN ~1 q K2 WN+/toMN+ D%J M~v 

M N W N  
K 3 = 2 3 - -  DN-- D~ 

1':4 = 24MN WN 

[ l_+ ,oWN] m N .-Jr l l N M  N ~. It NoM N + M N  
K5 = 25 D N  -- D'N D N  -- D'N J 

K 6 - 26[ 1 +ItNMN] MN WN 
D N -- DIN 

K 7 =)~7/tNoMN MN~WN I 
O N -- 1 2  N 

(63) 

and the new bounds have to satisfy 

Mu+l~>c lmax  Kg K i 
i ~ l  ' ~  

WN+ I ~ W N  + C2I lN+ l (  W N M N  -k- M N +  1) 

(64) 

Finally, we have to consider the effect of the change of variables on the 
domain of analyticity. 

L e m m a  1. If F(~o, LIt) is analytic for (~o,I)eF(D), then 
F(~, J, It) = F(~o, L It) is analytic for (~, J) e F(D - 4Co/L~ v+ IMN). 

Proof. Write x=(~o, I), y=(~k, J). From (53), we have y=x+G(x) ,  
. N + I  JAr with ]Gi(x)[~<~o~o lVlu. If ~ ( x , y ) = x + G ( x ) - - y  and IOiajl<e, 

then det(0x r  2. If y e F ( D - 4 c o p ~  +~MN), then x e 
F(D-3colt~+~Mu), and Cauchy's inequality implies e <  1/3, so that 
det(0 , . r  The implicit function theorem implies that we can write 
x = ~ ( y ) ,  where ~ is analytic, and so is F(y, la)=F(~(y),lt). | 

Hence, we must take 

DN+ 1 ~< D ~ -  4Co/t~ + I M N  (65) 
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7.3. Evo lu t ion  of  t h e  Bounds  w i t h  N 

We now choose domains of the form D~,=Do-Ndpo,  D'N= 
DN - -  d'Po, d'  < d. We wish to show by induction that for a suitable choice 
of d and d' and P0 small enough, 

mo 
M N =  (2//0) N (66) 

WN= Wo + c3 (1 -- 21---~) 

Replacing this in (63), we get K o ~ < [ 1 - p o 2 o M o ] - ~ < 2  
lto <~ [22oMo]-1, and K~<~kiMn/d'po, i =  1 ...7. Thus, we can take 

(67) 

if 

MN MN 
MN+I =clm d,po 2120 

w h e r e d ' = 2 c , m a n d m = m a x { 4 E ~ = , k i + 2 k 4 , 2 E i = s 7  k~} . 
To prove (67), we take c3=Wo+c2Mo, I 'V=Wo+c3,  

/lo <~ Wo[2c2Mo I~ ' ] - ' ,  so that 

(68) 

and 

c~M o F - 13 
+'l WNM  + M . . , )  [.o w+ 

<1~ [ Wo c,Mo] c3 

Finally, it is easy to check that the conditions (62) and (65) are 
satisfied if we take d =  d' + 4coMo + ko max{ 1 +p*( ffz+ Mo), Mo}. 

The last step in order to prove (46) is to take 

,69, 

In this way, WN(,o ) is bounded, D~l.o ) is still positive, so that 
F'(MN(~,o) ) is not empty, and the terms containing the phase are bounded 
by 

F N ( p  0 ) liar Mo 
t O lWN(t,o)--2N(/,o)--Moe--|n2[D~162176 =Mo e-l/c~'~ (70) 

Finally, we also see that the terms defining the successive changes of 
variables, i.e., /2o N+ If~ v, where f N "  MN, add up to a geometrical series 
converging toward a term of order :to. 
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7.4. Conservative Case 

It is easy to check that if (45) preserves the measure 
c(I) p(~o, L lt) d~o dI, p(q~, L 0) = 1, then (52) preserves the measure 
c(I) p,v(rp, L p)d~o dl, PN((P, L 0 ) =  1. As long as (52) is C 1 and c e C'-, we 
can apply the following result. 

L e m m a 2 .  If (52) preserves the measure c(I)pd(pdl ,  then 
Ou(Io,it ) = O(p N+l) and O+p = O(itN+ 1). 

Proof. We assume by induction that OuC(I)=ItPON and 
p(~o, L It) =po(L It) +itP+ ~pl(~ o, L It), which is clearly true for p = 0. We 
have 

C(/I) P(~OI, II, It) 
C( Io) p( ~Oo, Io, It) 

=de t ( l+pN+2c( Io )  ~ O(p) N ~ , 
0(p N+2) 1 -~ItP+-OI(C~)N) -~it +-OI(C-~N)/] 

= 1 +pP+2ai[C(Io) ON(IO, 0)] +ItN+2(CO~oOCN+O~[C2flN]) 

+ 0(it p+3) + 0(g  N+3) (71) 

On the other hand, making expansions, we obtain 

C(II) p(~01, Ii ,  p) 

C(Io) p(~Oo, Io, it) 

= 1 +,ttP+2[C(Io) g-200~opl(~00, Io, O) + c'(I o) ON(Io, 0)] 

+itU+2C(Io) c'(Io) flN((PO, I0, 0) + O(it p+3) + O(it N+3) (72) 

Comparing (71) and (72), we obtain for p < N 

12oOq, pl((po, I o, O)= OION(Io, 0) (73) 

The left-hand side is a periodic function of ~o with average 0. Hence, 
the right-hand side must vanish. This implies O~p~ ---0 and ON = const. But 
this constant must be zero since Ojv is divisible by c(1). This proves p = N 
by induction. For p = N, one obtains again that 0zON is a periodic function 
of rp with average 0, which proves the lemma. | 

In the C k case, we first do k -  1 changes of variables, so that the map 
takes the form (52) with N = k -  1 and is C ~. Then we can apply the above 
lemma, and finally we do the change of variables (53) with N = k ,  which 
proves (49). 
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In the analytic case, after N(po) changes of variables, the lemma 
implies that we can write ON(L#)=I~NON(I, It), and Cauchy's inequality 
gives 

ION(I,/~)1 ~< (/~0--I/~IY v (74) 

For / t l  =/~0/3, we have 

if" .< Mo 
I/~0NI ~<~, I/~PNI ~--~ (75) 

which proves (47). II 

8. C O N C L U S I O N  

In this work on classical billiards in plane domains, we found that 
some properties of bouncing maps, which are known in the Euclidean case, 
can be generalized to the situation where a magnetic field is applied per- 
pendicularly to the plane. Exact expressions for the Jacobian matrix and a 
generating function help us to find periodic orbits, analyze their stability, 
and compute bifurcation values. Perturbative calculations are improved. 

Some aspects of the behavior of billiards in convex domains are well 
understood: if the boundary is sufficiently smooth, the existence of whisper- 
ing gallery modes prevents ergodicity, and when the magnetic field B goes 
to infinity, the bouncing map behaves like a perturbed integrable map. We 
were able to construct quasiinvariants, which are conserved for a time of 
order B k-3 if the boundary is C k and of order e ~ when the boundary is 
analytic. Some of these properties remain valid for a more general class of 
billiards, the boundary of which is not convex, but has a bounded curvature. 

Chaotic behavior seems to be created by two different mechanisms: 
nonlinearity (responsible, for instance, for chaotic components near 
separatrices) and singularities (due to nonsmooth boundaries or discon- 
tinuities by tangency). Nonlinearity alone is not sufficient to make a 
magnetic billard ergodic, since we showed that there always exist invariant 
curves if the 15oundary is C 6 and tangencies are impossible. This implies in 
particular that billiards with boundaries of negative curvature are not 
necessarily very chaotic. In any case where the billiard is of the mixed type, 
the really challenging open problem remains to prove the existence of a 
chaotic component of positive measure. 

Finally, we discussed two examples of billiards fulfilling necessary con- 
ditions for ergodicity (i.e., their bouncing maps have singularities). Our study 



114 Berglund and Kunz 

of symmetric periodic orbits in the square led us to the conjecture that 
ergodic and mixed dynamics alternate when the magnetic field increases. 
However, only the first value of supposed ergodicity,/t  = x/r5/2, lies in the 
region /t > 1/2, where no trivially integrable component of phase space 
exists. The scattering billiard outside two circles shows strongly chaotic 
dynamics, but still possesses elliptic orbits for some values of the 
parameters. 

A P P E N D I X A .  PROOF OF PROPOSIT ION 1 

We consider the arc of trajectory in Fig. 2. If 

~ = a rg[ (X(s l ) - ) ( (So) )  +i(  Y ( s l ) -  Y(so))] (Al)  

is the angle between the x axis and POP1, then we have 

0 0 = 0 ~  - -  ~ '0  --X 

01 = r l  - ~ - 2 '  

Now, using (6) and l 2 = (X(s , )  - )((So)) 2 + (Y(s l )  - Y(so)) 2, we find 

(A2) 

0~ 1 
OSo~-- = ~ [(  Y(s] ) - Y(So))  X ' ( S o )  - ( X ( s l )  - X (So) )  r'(s0)] 

sin a cos to-COS ~ sin ro sin(0o +Z)  

l 

Or o = X(So) = Xo 
OSo 

0 Z 1 1 Ol 

OSo cos X 2p Oso 

l 

cos(0o +Z)  cos(0o +Z)  sin Z 
I 

2p cos Z l cos Z 

(A3) 

where the last equality comes from the zero-field generating property of l: 

Ol 1 
OSo I [ - X ' ( s o ) ( X ( S l ) - X ( s o ) ) - Y ' ( s o ) ( Y ( s l ) -  Y(s0))] 

= - c o s  ~ cos ro - sin ~ sin ro = -cos (0o  +Z)  (A4) 

Collecting terms, we get 

a0___qo = sin(0o + 2Z) a01 sin 0o 
Xo, (A5) 

OSo l cos Z 0So I cos Z 
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Similarly, we find 

00___2 = sin 0t 00___L = sin(0~ + 2Z) + x~ (A6) 
OS 1 lcos Z' Ost l c o s x  

These quantities give dOo and dot as function of ds o and ds~. Solving 
a linear system, we can express dsj and dO~ as functions of dso and dOo. 
Finally, using du = sin 0 dO, we obtain Eqs. (7). I 

A P P E N D I X B .  PROOF OF PROPOSITION 2 

Taking the derivative of (14) and using (6), we get 

OB~, ( 1 2  "~ '/~- 
OI = 1 4p2j = c o s x  

From simple geometry, we obtain 

OA 1 
OSo 2 l sin( 0o + X) 

so that the derivative of (13)  is 

OG 10A OBl, Ol 
- -  = --sin X sin(0o +X) -- cos X cos(0o +X) = Uo 

(B1) 

(B2) 

where we have used (A4) and (6) again. We proceed in a similar way 
for sl. | 

A P P E N D I X C .  DISCONTINUITIES OF THE M A P  DUE 
TO TANGENCIES 

The bouncing map is discontinuous either in the corners of the bound- 
ary (s~ Et) or if the trajectory becomes tangent to the boundary. As can 
be seen in Fig. 4b, such a tangency means that there are two arbitrarily 
close initial conditions z~, z2 such that Tz 2 is far from Tz~ but close to 
T2z~, Then there exists a point z* between z~ and z2 such that T z * =  
(s*, - 1 )  [or ' (s*,  +1)  i f 0Q  is not convex]. 

Let cd = [0, [0Q[)x { -  1, + 1 }. It can be written as the union of three 
disjoint sets: 

�9 The set cd o o f - e c d  such that T- t z  does not exist. 

�9 The set cd~ of z e cd such that T -  ~z e cal. 

�9 The set cd 2 of z e ~ such that T -  ~z r ~. 
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The set ~ of lines of discontinuity of T is T-~Cr 2. 
To construct the sets cgi, we first look for circles of radius p which are 

inscribed in Q, i.e., circles contained in {2 and tangent to OQ at two points 
or more. Let ~ be the set of abscissas g; of these contact points. Let /~ be 
set of abscissas .r such that Ip(-r =~.  Then %,  cr and cr 2 are delimited 
by points with abscissa in/~, E', and E2 (see ref. 15 for a more geometric 
interpretation of these sets). 

We illustrate this construction in the case of an elliptic boundary (15), 
using ~o instead of s. Here we take cg= [0, 10al)x { -  1}. Inscribed circles 
exist if Pmin = 2 - 1  </2 ~< l, and their contact points are solutions of 

sin2 ~bi= 2 - ' -  1 (C1) 

If pm~. = 2  -~ </2 ~<Pr.~x = 2 2, there are points Oj, given by 

�9 , . (2/2) 2/s - 1 
sm- {oj- 2 2 -  1 (C2) 

If they exist, the solutions can be ordered, 

They satisfy 
O~(PI~(PI ~ 2 ~ 2 ~ ( P 3 ~ 3 ~ 4 ~ ( P 4 ~  2/'g 

T-l(O;, -- 1)= (05_,, -- 1) for i =  1,2, 3,4 (C3) 

lim T - ] ( c p , - 1 ) = ( 0 j , - 1 )  for j = l , 3  (C4) 

Table I shows the resulting subsets of cg. Following ideas in ref. 5, one 
can look at the successive preimages ~ ,  = T-"cg2 of the lines of discon- 
tinuity. Numerical simulations show that they densely fill the stochastic 
layer near u =  - I  (see Fig. 11). 

Table I. The Sets ~o, ~1, and 52 for an Elliptic Boundary 

(o, ,Om~~ ~ ~ 
(?rain, l ]  ((/~2, ~3] U (~4, (pl ] [~1, ~2] U [~3, ~4] (~1, ~1) U (~2, r L.) 

x { - ~ }  •  (0~, ~),.., (~,,, 04] x { - ~} 
( l ,  Pmax) (~2, ~3] U (04, ~bl] J~ (~1, ~2] U (~3, {b4] 

• x{-l} 
Cp ... .  oo) ~ 0 
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Fig. 11. Behavior near u = - 1  of the billiard in an ellipse when Pmin<,tt <Pma• (1 t = 1, 

2= 2): (a) chaotic orbit near u = -1,  (b) the preimages N,,, n = 1 ... 15, of the line u = -1.  

A P P E N D I X D .  P R O O F  OF P R O P O S I T I O N  3 

The following geometrical  lemma describes some properties of  convex 
plane curves (which seem quite obvious if one draws a picture). 

Lemma D1. Let D be a circular segment of  angle 20~e(0, re] and 
radius 1. Let cg be a strictly convex C 2 curve with extremities on the ver- 
tices A0, Bo of  D, and making acute or  right angles with the chord  AoBo 
(see Fig. 12). Then, if the curvature  of  cg is everywhere less than 1, it is 
entirely contained in D and shorter  than 2~. 

Proof. We introduce coordinate  axes as in Fig. 12. For  - s i n s <  
x < sin ~, ~g can be described by a function y(x) ,  and the curvature  is 

y"(x) 
~c(x) = [1 "k'y'(x)2] 3/2~(0' 1) (D1) 

This equat ion can be integrated between the abscissa Xo of  the max imum 
So and x: 

k(x)  
y ' (x)  -- [ 1 - k ( x )  2] t/2 

~ x  

k(x)= n(x~)dx~, Ik(x)i < IX-Xol 
x O  

(D2) 

For  Xo - 1 < x < x o + 1, this implies 

[ y ( x )  -- (y(Xo) - 1 )]2 + ( x _  Xo)2/> 1 (D3) 
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ao i 

Y 

~ B 0  �9 

Fig. 12. Geometry of the circular segment of Lemma D.I. 

and hence ~ lies above the circle of radius 1 tangent to it at its summit S o. 
Now assume by contradiction that cr lies outside D between two points P 
and P'. Let S be the point of cr furthest away from PP'. The circle of unit 
radius tangent to c~ at S cannot intersect D twice between P and P ' ,  which 
contradicts (D3). 

If P and P '  are two points of ~, we denote by PP' the length of c~, 
between these points. If P(x) = (x, y(x)),  then for X o -  1 < x < Xo + 1, 

SoP( x )=  [ I  +y(x l )2] l /Zdx l  ~< Arcsin Ix--x0[ (D4) 
- 0  

Assume that Xo ~< 0. Then 

AoA l <~ Arcsin(xo + sin ~) + Arcs in(-Xo)  ~< 

by convexity of Arcsin. Considering the circular segment of vertices A ~ and 
B o, one obtains that A~B o can be divided into two parts, one of which is 
bounded by ct/2. Repeating this procedure, we see that c~, can be divided 
into pieces whose lengths are bounded by a geometrical series, converging 
toward 2~. | 

C o r o l l a r y .  Let c~ be a C 2 plane convex curve, whose curvature 
satisfies 0 < 1/pm,x <~ ~C(S) <~ I/Pmi n < CO. Let F be a circle of radius It < Pmin" 
Then: 

1. F can be tangent to ff at one point at most. 

2. F can intersect ~ at two points at most. 

Assume that F intersects ~ at P and P '  and write % = ff n Int F. Then: 

3. % is shorter than n/l, 

4. The angles between PP' and rr 0 are acute. 
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Fig. 13. Geometry of the trajectories for a convex billiard in strong magnetic field. 

Proof. Assuming that condition 1 or 2 is false, one can construct a 
counterexample of the lemma (one may have to translate F). Conditions 3 
and 4 are obvious if one considers all the circles of radius it containing P 
and P'. II 

We now proceed to the proof  of the proposition. 
Choose two points P and P'  on OQ. They can be connected by two, 

one, or no arc of trajectory, depending on whether their distance is smaller 
than, equal to, or larger than 2p. In each of the first two cases, we call So 
and s~ their abscissas, as in Fig. 13. We define 

(So--Sl)(mod 10QI) 
a -  (D5) 

It 

The corollary and our sign conventions imply that 0 < a < re. Moreover, the 
arcs cannot intersect OQ at a point different from P or P'. 

Following the proof  of Proposition 2, it is easy to show that the two 
trajectories can be described by the generating functions 

G + - ( s ~ 1 7 6  (D6) 

in the sense that dG +- =Uo ~ dso-u~ dsl. Here, l e (0 ,  2:t] and A are defined 
in Fig. 13, and 

b(x) = Arcsin x + x( 1 - x-') I/2 
(D7) 

b '(x)  = 2(1 -x2)  :- 
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The functions A and l are directly related to the shape of OQ, which 
we describe using the function r(s), which has the following properties: 

1. r(s + 10QI) -- r(s) + 2rr. 

2. r'(s) = x(s) e [ l ip . . . .  l/pmi,]. 
3. SIO ~ e ir~s) ds = O. 

If l(so, s)) is the vector connecting the points of abscissas So and s), we 
have 

t(so, sl) = t(s) ds 
o 

9 SI #1 

/(So, s , ) - =  I, ~ ds f~'o ds' (t(s) I t(s')) 

= ds ds' cos[ r(s) - r(s')] (D8) 
:r 30 

Ill' A(so, sl) = ds �89 II(so, s) ^ t(s)l 

fsi  
=�89 ds ds' s i n [ r ( s ) -  r(s')] 

80 SO 

Carrying out the change of variables S=So+/aat ,  we obtain /(So, sl) 2= 
lt2a2I(so, lta)' A(sl ' So ) = i ~ ~ , ~lt-a-I (s o, lta), where 

f 
o 

I( so, l w  ) = j dt' cos T( so, lwt ,  lwt '  ) 
- -1  1 

f 
o I'_ 

I ' ( so , I ta )=  J dt dt' sin T( so, /tat, l~at' ) (D9) 
- - 1  1 

T(so, / tat , / ta t ' )  = r(s o +ltat)  -- r(s o +lzat')  

If the boundary is C 2, one gets T =  O(lta), I =  1 + O(lta), l '  = O(/to'), and 
thus G+-(So, s l , l t )  =ltg+-(a, So, lt), where g+-(a, So, O) = ++_b(a/2) does not 
depend on So. From this fact, we can already guess the structure of 
the map. Indeed, ug=O,g+-+l ta sog  +-, u ~ = O , g  +-, and thus u ~ =  
u~ + lzOsog + = u~ + O(lzz). 

However, G is not sufficiently smooth around l = 2it to be expanded. 
We proceed in a slightly different way: taking derivatives of (D8), we 
obtain 

Ol It . OA It aK, Od It 
~So=7 aa' Os o 2 Osl 2 aK' (D10) 
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where 
0 

J(so, IXa) = f dt cos T(s o, O,/,tat) 
- -1  

0 

K(s o,/~a) = I dt sin T(so, O, I~at) (D11 ) 
- - I  

0 

K'(so, Ira) = I dt cos T(so,~at, - ~ a )  
- -1  

Note that  if the boundary  is C k, the above integrals are all C ~-1. Differen- 
tiating (D6), we get 

OG + - 
ug = OSo 

( _ I ' - '~  l i 2 0 l  I OA 
=+_ 1 4/a2 j ffSSo /~as o 

1 , _ ' ~ l 1 2 7 a a _ . ~  (D12) l_a~_s ) ~ , .  1 
/ 

" 1 o.21 ) j2  

4I( 1 -- Uo) = 4I  sin-' 0o 

= o'2(K 2 4- J 2 ) I -  &r cos 0 o KI+ 4 ( I -  j2)  

= ~o(a ,  It, So, 0o) 

When the boundary  is C 3, we have I =  1 + O(~fl-a=), J =  1 + O(#2a2), 
and K =  iX(So)/~G + O(it2a'-), so that q)o = a z [  1 - 2  cos 0o X(So)It + O(lfl)]. 

If we write a = 2 sin 0o I1, then 

0 = ~(q,  It, So, 0o) 

= [ , /7 - , ,  "21 
\ 7 2 )  J <, =_. ~. oo ,, 

= l - #l[ 1 - cos 0o tO(So)It + O(/t2)] (DI3)  

The function �9 has the properties ~(qo ,0 ,  so, 0o )=0 ,  where r/o= 1, 
and 0,~(r/o,  0, So, 0 o ) = - 1 .  Thus, the implicit function theorem implies 
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that in a neighborhood of p = 0, q can be expressed as a C k-  ~ function 
of p, So, and 0o. This function can be constructed using Newton's method: 
if qo - 1 and 

rl,, + l( So, 0o, p) = q,,( So, 0o, p) + c1'(,l,,( So, 0o, p ), p, So, 0o) 

then ~(r/,,, p, So, 0o) = O(p"+l). For k = 3, we get 

ii(s o, 0 o, p) = 1 +cos  0o h'(so)/-t + O(p 2) (DI4) 

The first equation of (41) is obtained by using s t = s o - p O ' =  
so - 2p sin Oopl, i.e., 

2 
a(so, 0o, ,u) = -  [ 1 -q(So,  0o, p)] ~ C k-2 (D15) 

It 

Note that if we had used the variable u instead of 0, we would not have 
been able to apply the implicit function theorem when u ~ +_ 1. Indeed, the 
map expressed in the variables (u, s) contains the factor ( 1 -  Uo) l/z. 

To obtain the second equation of (41), we observe that [see (B2)] 

0~ -0o=(0~  + Z) - (Oo + X) 

r 2 
( 2 0 A ) 1 -  [ ~ -  Arcsin ( -  -0~o) ] L~ - Arcsin \ l OslJ J l 

= A r c s i n ( - ~ i ) - A r c s i n ( ~ i ) = O ( p 2 a 2 )  (DI6) 

where we have used point 4 of the corollary to choose the determination 
of Arcsin. As a consequence, 

4,12 K - Arcsin (---='~] b(so, 0o,p)=--w--~ Arcsin 
l-L-~- \ J_ r / J  I~ 

C k - 3  

= 2  sin oo q 

(D17) 

Higher orders of the expansions of a and b can be obtained by com- 
puting expansions of I, J, K, K', and q up to the desired order and 
replacing them in (D15) and (DI7). II 

APPENDIXE.  S Y M M E T R I C  ORBITS OF PERIOD 4 k i N  
THE SQUARE 

We want to study the existence and stability of 4k-periodic trajec- 
tories, similar to the one shown in Fig. 71", where k--2.  As shown in 
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(a) 

y y x x y y x 

Fig. 14. 

(b) 

y" 

Geometry of symmetric 4k-periodic trajectories in the square. 

Fig. 14, 
satisfying 

2kx + 2(k + 1 ) y = 1 
2y 2 -+- 2xy + x 2 =it  ? 

2kx' + 2(k - 1 ) y' = 1 
2y"- + 2x' y' + x"- = p2 

such trajectories can be characterized by numbers x,  y or  x',  y'  

{O0<<'Y ~ �89 
~ 2 y + x < ~ � 8 9  

(El)  

{O0~Y' 
<x'~�89 

These equations have three different kinds of solutions: 

I + R  1 
Y+ - 2 ( k ' - +  1)' p ~ < ~ I t < ~  

1 - R  1 
Y - - 2 ( k 2 + l )  ' P~ <~P<~2-k (E2) 

where 

- I + R  1 1 
Y' ), < -- 2(k2 + 1 )-~<~lt x/5(k- 1) 

R = [ 1 - (k 2 + 1 )( 1 - 4kZp2)] I/2, 1 
Ilk- -- 2'k2 + t  1) I/2 (E3) 

Using (7), we find that the stability matrix for k bounces is 

( C p (1 -C2) '~ ( ' l  - 2 1 C f - '  
Sk=  --1/p C J\O 

= (  C p ( 1 - ( 2 k - 1 ) C " ) )  
- l ip  (2k - 1 ) C 

(E4) 

t = 1 Tr Sk = Ck 
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where 

Now, since 

y y' 
C = c o t g 0  - - -  (E5) 

y + x y '  + x '  

S4 k = S 4, i T r  S4k = 8 t  4 - -  8t  2 + 1 (E6) 

the total orbit is hyperbolic if It[ > 1, parabolic if It[ =0,  l/v/2, 1, and 
elliptic otherwise. Applying this to (E4), we find that y+-orbits are hyper- 
bolic as soon as p >p~-,  y_-orbits are never hyperbolic, and f -orb i t s  are 
hyperbolic if ~t > + P k , where 

( k 2 + l )  1/2 
,u~ - 2 ( k : -  1) (E7) 

We have thus obtained that symmetric 4k-periodic orbits may be stable 
only ifp~- <i t  <p~-. These bounds have the properties 

1 

p~-_~ > p [  if k > 2  

(E8) 

We see that when/1 <p~-, no 4k-periodic orbit exists. At kt =p~-, a pair of 
such orbits with opposite stability appears in a saddle-node bifurcation. 
The stable one loses stability at p = p [ .  Numerical simulations show that 
new stable orbits are created, but they quickly lose stability for some 
it=/~ff. For k > 2 ,  this happens long before a 4 (k- l ) -per iod ic  orbit 
appears at p =Pk--I ,  and since no other stable orbits can be found in the 
interval, we are led to the conjecture that the billiard in a square is ergodic 
when p* ~gt ~</z~-_ ~. 

APPENDIX  F. ELLIPTIC ORBITS OF PERIOD 6 OUTSIDE 
TWO CIRCLES 

We want to show that the billiard outside two circles described in Sec- 
tion 6.2 possesses elliptic orbits for some values of the parameters. 

The trajectory depicted in Fig. 10b for p = 2 =  1 turns out to be 
linearly marginally stable for these values of the parameters if we apply (7). 
Thus we have to analyze its stability for nearby values of p and 2. 
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Fig. 15. 

o' 0 

g 

Geometry of period-6 trajectories outside two circles. We show a quarter of the 
trajectory, which is symmetric with respect to the coordinate axes. 

The trajectory can be characterized by two angles 0' and q~, as 
in Fig. 15. The other  angles are then given by Z l = r c / 2 + 0 ' - c p / 2 ,  
X2 = O' + ~o - n/2. Using the relations IL sin Xl = ((n - ~0)/2) and 
cos q~+/~ s i n z 2 = 2 ,  we obtain  the system 

1 + c o s  cp =lL2(1 + c o s ( c p - 2 0 ' ) )  

cos cp - / ~  cos(q~ + 0') = 2 
(F1) 

For  small values of  e = It - 1 and 6 = 2 - 1, it has the solution 

0 ' =  ~ e  

4 1 
(F2) 

where 0 (2 )  stands for terms of  order  e 2, 6 z, e6. The Jacobian matrices M I 
and M2 for the two types of  bounces can now be computed  using (7), with 
0; = 7 r -  0' and l,. cos Z; =/~ sin(2z;). The stability matrix of  the orbit  is given 
by $6 = ($3) 2, S~ = M ~ M 2 .  We obtain 

:=~ 

t = � 8 9  $ 3 =  - 1 -  1 2 e + 6 6 +  0(2)  

1 Tr  $6 = 2t 2 -  1 = 1 + 4 8 e -  243 + 0(2)  
(F3) 

Hence, for small 6 and e, the orbit  is elliptic for 6 > 2 e +  O(e2), i.e., for 
2 > 21L - 1 + O((p - 1 )2), in a ne ighborhood  of  2 =r = 1. 

822/83/1-2-9 
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